Name:

Block:

Seat:

Chapter 6 Check List:

1 Sketching and identifying a Slope Field (p. 408)

2 Sketching a solution of a differential equation us- 2 Practice Diff-EQs (6.2-6.3) ing a slope field (p 409)

3 Solving a differential equations (p 415)

4 Growth and decay models solving $\frac{dy}{dt} = ky$ (p

5 Finding general and particular solutions to separable differential equations. (p 434-4)

Delta Math Check List:

1 Practice Slope Fields (6.1)

Khan Academy Check List:

1 Differential Equations Unit: 7 lessons, 2 Quizzes

2 Explanation of 2011 AB 5 Videos

Always review your Notes and Examples (see topics if you lost your notes), Quizzes, and old homework problems. There is a separate pdf with Multiple choice practice as well.

- 1. (Calc OK))A sample of Dl-13 (an isotope of Delerium) loses 99% of its radioactive matter in 199 hours. What is the half-life of Dl-13?
 - (a) 4 hours
 - (b) 6 hours
 - (c) 30 hours
 - (d) 100.5 hours
 - (e) 143 hours
 - (f) None of these
- 2. In which of the following models is $\frac{dy}{dt}$ directly proportional to y?

$$I \ y = e^{kt} + C$$

II
$$y = Ce^{kt}$$

III
$$y = 28^{kt}$$

IV
$$y = 3\left(\frac{1}{2}\right)^{3t+1}$$

- (a) I only
- (b) Honly
- (c) I and II only
- (d) II and III only
- (e) II, III, and IV only
- (f) All four
- 3. (Calculator Active) The rate at which acreage is being consumed by a plot of kudzu is proportional to the number of acres already consumed at time t. If there are 2 acres consumed when t = 1 and 3 acres consumed when t = 5, how many acres will be consumed when t = 8?
 - (a) 3.750
 - (b) 4.000
 - (c) 4.066
 - (d) 4.132
 - (e) 4.600
 - (f) None of these
- 4. Which of the following are separable differential equations? (There may be more than one)
 - (a) $\frac{dy}{dx} = \ln(x+y)$
 - (b) $\frac{dy}{dx} = e^{x+y}$
 - (c) $\frac{dy}{dx} = x^2 + 3xy$
 - (d) $\frac{dy}{dx} = xy + 4x$
 - (e) None of these

Page 3 of 12 February 2022

5. Select the differential equation that matches the given slope field.

					.,							
1	Ī	I	Ī	I	167	/	/	/	/	/	_	
/	1	1	1	1	15	/	/	/	/	_	_	
/	1	1	I	1	14/	/	/	_	_	_	_	
/	/	1	1	1	/ 3/	/	_	_	_	_	_	
_	/	1	I	1	12	_	_	_	_	_	_	
_	_	/	I	/	- 1 +	_	_	_	_	_	_	
					- 1							
		_		_		_	_	_	_	_	_	× ×
-6 -	-5	-4 /	-3 	-2 /	-1 1-	1	2	3	4	5	6	→ x
-6 -	⁻⁵	-4 /	-3 	-2 /	- 1	1 /	2	3	4	5	6 -	→ x
-6 - - -	-5 / / /	-4 / / I	Ĭ	1	1+	1 /	2 - - /	3 - -	<u>4</u> -	<u>5</u>	6 - -	→ x
-6 - - - / /	1		Ĭ	7 1	/- ₂	1 - / /	2 - - /	3 - - '	4	5	6 -	→ x
- /	1//	Ī	Ĭ	7 1 1	/-1- /-2- /-3/	一 	2	3 / /	4 /	5 - 1 / /	6	→ x

(a)
$$\frac{dy}{dx} = -\frac{y}{x+3}$$

(b)
$$\frac{dy}{dx} = (x+3)y^2$$

(c)
$$\frac{dy}{dx} = \frac{x+3}{y}$$

(d)
$$\frac{dy}{dx} = \frac{y^2}{(x+3)^2}$$

- (e) None of these
- 6. Select the differential equation that matches the given slope field.

(a)
$$\frac{dy}{dx} = \frac{(y-1)^2}{x}$$

(b)
$$\frac{dy}{dx} = -\frac{x}{y-1}$$

(c)
$$\frac{dy}{dx} = -\frac{x^2}{(y-1)^2}$$

(d)
$$\frac{dy}{dx} = -\frac{y-1}{x}$$

(e) None of these

- 7. Which of the following is a solution of the differential equation $xy' 4y = x^5 e^x$?
 - (a) $y = 4x^5 e^{2x}$
 - (b) $y = 6e^{2x} 7\sin 2x$
 - (c) $y = x^4 e^x$
 - (d) $y = 5e^{-2x}$
 - (e) $y = \ln x$
 - (f) None of these

8. (a) (3 points) Consider the differential equation $\frac{dy}{dx} = xy^3$ with a particular solution y = f(x) having an initial condition y(-2) = -1. Use the equation of the line tangent to the graph of f at the point (-2, -1) in order to approximate the value of f(-1.9).

(b) (3 points) Consider the differential equation $\frac{dy}{dx} = (x^2 + 3)(y - 2)$ with a particular solution y = f(x) having an initial condition y(0) = -3. Use the equation of the line tangent to the graph of f at the point (0, -3) in order to approximate the value of f(0.1).

9. Find the general solution to the following differential equations, then find the particular solution using the initial condition.

condition.

(a)
$$\frac{dy}{dx} = \frac{x}{y}$$
, $y(1) = -2$

(b)
$$\frac{dy}{dx} = -\frac{x}{y}, \ y(4) = 3$$

(c)
$$\frac{dy}{dx} = \frac{y}{x}, \quad y(2) = 2$$

(d)
$$\frac{dy}{dx} = 2xy, \quad y(0) = -3$$

Page 6 of 12

February 2022

(e)
$$\frac{dy}{dx} = (y+5)(x+2), \quad y(0) = -1$$

(f)
$$\frac{dy}{dx} = \cos^2(y), \ y(0) = 0$$

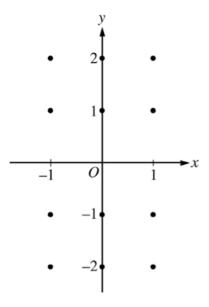
(g)
$$\frac{dy}{dx} = (\cos x)e^{y+\sin x}, \ y(0) = 0$$

Page 7 of 12

February 2022

(h)
$$\frac{dy}{dx} = e^{x-y}, \quad y(0) = 2$$

(i)
$$\frac{dy}{dx} = -2xy^2$$
, $y(1) = \frac{1}{4}$

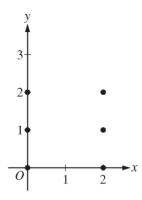

(j)
$$\frac{dy}{dx} = \frac{4\sqrt{y}\ln x}{x}, \quad y(e) = 1$$

- 10. Find the solution of the differential equation $\frac{dy}{dt} = ky$ that satisfies the given conditions.
 - (a) y(0) = 50 and y(5) = 100

(b) The graph of y passes through (1,55) and (10,30)

11. Write and find a general solution of the differential equation that describes this statement: The rate of change of G with respect to to t is proportional to 50 - t.

- 12. (2010B AB 5 No Calc) Consider the differential equation $\frac{dy}{dx} = \frac{x+1}{y}$.
 - (a) (3 points) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and for -1 < x < 1, sketch the solution curve that passes through the point (0, -1).

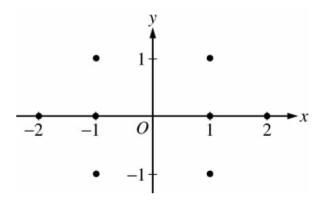


(b) (1 point) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane for which $y \neq 0$. Describe all points in the xy-plane, $y \neq 0$, for which dy = -1.

(c) (5 points) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = -2

13. (2016 AB 4 - No Calc) Consider the differential equation $\frac{dy}{dx} = \frac{y^2}{x-1}$.

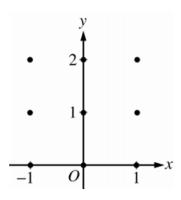
(a) (2 points) On the axes provided, sketch a slope field for the given differential equation at the six points indicated.


(b) (2 points) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(2) = 3. Write an equation for the line tangent to the graph of y = f(x) at x = 2. Us your equation to approximate f(2.1).

(c) (5 points) Find the particular solution y = f(x) to the given differential equation with the initial condition f(2) = 3.

Page 11 of 12 February 2022

14. (2006 AB 5 - No Calc) Consider the differential equation $\frac{dy}{dx} = \frac{1+y}{x}$ where $x \neq 0$


(a) (2 points) On the axes provided, sketch a slope field for the given differential equation at the eight points indicated.

(b) (7 points) Find the particular solution y = f(x) to the differential equation with the initial condition f(-1) = 1 and state its domain..

15. (2007B AB 5 - No Calc) Consider the differential equation $\frac{dy}{dx} = \frac{1}{2}x + y - 1$.

(a) (2 points) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(b) (3 points) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all solution curves to the differential equation are concave up.

(c) (2 points) Let y = f(x) be the particular solution to the differential equation with the initial condition f(0) = 1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.

(d) (2 points) Find the values of the constants m and b, for which y = mx + b is a solution to the differential equation.